[Contribution from the Research Laboratory of Physical Chemistry, Massachusetts Institute of Technology, No. 316]

# The Freezing Points of Aqueous Solutions. V. Potassium, Sodium and Lithium Chlorates and Perchlorates ${ }^{1}$ 

By George Scatchard, S. S. Prentiss and P. T. Jones

The freezing points of these substances were studied with the hope of gaining further insight into the effect of the shape and size of ions upon their chemical potentials or activity coefficients. The great difference between the behavior of the alkali nitrates and that of the alkali halides aroused our interest in the chlorates and perchlorates. x-Ray studies on salt crystals ${ }^{2}$ indicate that the nitrate ion is planar and triangular, that the perchlorate ion is a regular tetrahedron, and that in the chlorate ion one of the oxygens of the perchlorate ion is removed without much change in the relative positions of the other atoms. There is thus a graded change in shape from the nitrate to the perchlorate ion, accompanied of course by a change in size.

Potassium and sodium chlorates were prepared by three crystallizations of c. P. salts from conductivity water. Lithium chlorate was prepared by adding a solution of C. P. barium chlorate to one of c. P. lithium sulfate. Reagent potassium perchlorate was crystallized once. Sodium and lithium perchlorates were prepared from the corresponding C. P. carbonates and C. P. perchloric acid solution. In all cases the concentration of the stock solution was determined by evaporating the solution with sulfuric acid, igniting (with the addition of ammonium carbonate for the potassium salts), and weighing as the sulfate. The potassium perchlorate was also evaporated and weighed as such. The water and ice were as described in paper I.

The results of the conductance measurements are given in Table I. $M$ is the concentration in moles per kilogram of water, and $L$ is the specific conductance. The results of the freezing point measurements (calculated by the thermocouple equation of paper IV) are given in Table II. $j$ is the Lewis and Randall function previously used. The smoothed values of $M / L$ and of $j$ were obtained as in the previous papers. Those of $j$ at
(1) Paper IV in this series is in This Journal, 65, 4355 (1933).
(2) W. H. Zachariasen, ibid.. 63, 2123 (1931); Z. Krist., 73, 141 (1930): H. Bräkken and L. Harang. ibid., 75, 538 (1930): K. Herrmann. O. Gerngross and W. Abitz, ibid., 75, 41 (19.30).
rounded concentrations are given in Table III and the corresponding values of $-\log \gamma^{\prime}$ in Table IV. The measurements on the two potassium salts are carried to the eutectic point. The small solubilities of these salts make the measurements on them slightly less consistent than those with the other salts. For the others the average deviations of the experimental points from the smooth curves is between one and two in the last place given for $M / L$, about $0.05 \%$ in $j$ for solutions more concentrated than $0.01 M$, and

Table I

| Conductance at $10^{\circ}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M | $M / L$ | $M$ | $M / L$ | M | $M / L$ |
| $\mathrm{KClO}_{3}$ |  | $\mathrm{NaClO}_{3}$ |  | LiClos, |  |
| 0.29063 | 13.337 | 1.44454 | 21.728 | 1.2863 | 23.392 |
| . 20166 | 12.846 | 1.10817 | 20.292 | 1.1451 | 22.734 |
| . 17290 | 12.662 | 0.78319 | 18.919 | 0.97723 | 21.952 |
| . 12511 | 12.308 | . 65420 | 18.302 | . 74704 | 20.843 |
| . 098294 | 12.073 | . 64351 | 18.252 | . 57624 | 19.982 |
| . 092694 | 12.018 | . 54072 | 17.770 | . 38015 | 18.874 |
| . 062568 | 11.689 | . 36057 | 16.828 | . 33437 | 18.586 |
| . 041891 | 11.402 | . 17985 | 15.642 | . 20029 | 17.625 |
| . 036680 | 11.317 | . 14552 | 15.353 | . 12325 | 16.908 |
| . 028279 | 11.167 | . 064643 | 14.463 | . 086817 | 16.474 |
| . 021112 | 11.014 | . 059483 | 14.385 | . 047568 | 15.866 |
| . 015395 | 10.876 | . 058347 | 14.588 | . 036491 | 15.639 |
| . 008954 | 10.668 | . 022018 | 13.662 | . 012000 | 14.909 |
| . 008352 | 10.648 | . 021614 | 13.642 | . 008834 | 14.756 |
| . 006308 | 10.561 | . 007308 | 13.130 | . 004151 | 14.453 |
| . 002355 | 10.366 | . 007279 | 13.130 | . 003545 | 14.411 |
| . 002082 | 10.315 | . 006598 | 13.099 | . 001046 | 14.071 |
| . 000678 | 10.152 | . 002631 | 12.814 | . 000845 | 14.040 |
| . 000539 | 10.133 | . 002437 | 12.807 |  |  |
|  |  | . 002418 | 12.803 |  |  |
|  |  | . 001248 | 12.648 |  |  |
|  |  | . 000808 | 12.578 |  |  |
|  |  | . 000666 | 12.513 |  |  |


| $\mathrm{KClO}^{2}$ |  | NaClO4 |  | $\mathrm{LiClO}_{4}$ |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 0.070501 | 11.794 | 1.8055 | 21.847 | 1.5038 | 22.052 |
| .035755 | 11.250 | 1.2453 | 19.651 | 1.2498 | 21.137 |
| .017094 | 10.823 | 1.1091 | 19.133 | 1.0264 | 20.328 |
| .009189 | 10.571 | 0.86690 | 18.199 | 0.93887 | 20.004 |
| .004191 | 10.346 | .72723 | 17.657 | .76590 | 19.360 |
| .002069 | 10.212 | .64741 | 17.329 | .66094 | 18.951 |
| .000665 | 10.082 | .45132 | 16.496 | .44918 | 18.064 |
|  |  | .26736 | 15.571 | .39705 | 17.823 |
|  |  | .20308 | 15.185 | .35768 | 17.637 |
|  |  | .12385 | 14.588 | .28531 | 17.268 |
|  |  | .1134 | 14.477 | .17622 | 16.584 |
|  |  | .048884 | 13.722 | .095886 | 15.894 |
|  |  | .09136 | 13.402 | .061488 | 15.485 |
|  |  | .005024 | 12.977 | .031405 | 14.975 |
|  |  | .003374 | 12.638 | .017236 | 14.617 |
|  |  | .001575 | 12.379 | .006914 | 14.203 |
|  |  | .001102 | 12.310 | .002568 | 13.906 |
|  |  | .000746 | 12.267 | .000811 | 13.797 |
|  |  |  |  |  |  |



The letters denote the series. Series $A-D$ were run with increasing concentrations and series $E-H$ with decreasing concentrations.

| Table III |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $j$ Values of the Alkali Chlorates and Perchlorates |  |  |  |  |  |  |  |
| M | $\underset{\lim }{\lim .}$ | KClOs | $\mathrm{NaClO}_{3}$ | $\mathrm{LiClO}_{3}$ | $\mathrm{KClO}_{4}$ | $\mathrm{NaClO}_{4}$ | $\mathrm{LiClO}_{4}$ |
| 0.001 | 0.0118 | 0.0105 | 0.0110 | 0.0109 | 0.0118 | 0.0113 | 0.0104 |
| . 002 | . 0167 | . 0144 | . 0152 | . 0147 | . 0168 | . 0157 | . 0141 |
| . 005 | . 0264 | . 0221 | . 0233 | . 0216 | . 0266 | . 0237 | . 0204 |
| . 01 | . 0374 | . 0308 | . 0315 | . 0284 | . 0379 | . 0317 | . 0265 |
| . 02 | . 0529 | . 0435 | . 0419 | . 0361 | 0539 | . 0410 | . 0332 |
| . 05 | . 0836 | . 0686 | . 0597 | . 0463 |  | . 0579 | . 0417 |
| . 1 | . 1182 | . 0960 | . 0761 | . 0518 |  | . 0724 | . 0448 |
| . 2 | . 1672 | 1325 | . 0958 | . 0513 |  | . 0890 | . 0393 |
| . 3 | . 2047 | a | . 1090 | . 0459 |  | . 0997 | . 0277 |
| . 4 | . 2364 |  | . 1195 | . 0381 |  | . 1075 | . 0140 |
| . 5 | . 2643 |  | . 1285 | . 0292 |  | . 1140 | -. 0006 |
| . 6 | . 2897 |  | . 1367 | . 0195 |  | . 1195 | -. 0158 |
| . 7 | . 3127 |  | . 1445 | . 0092 |  | . 1241 | - . 0313 |
| . 8 | . 3343 |  | . 1517 | -. 0016 |  | . 1280 | -. 0473 |
| . 9 | . 3546 |  | . 1580 | - . 0125 |  | . 1315 | -. 0635 |
| 1.0 | . 3738 |  | . 1627 | -. 0235 |  | . 1344 | - . 0798 |
| 1.1 | . 3920 |  | . 1665 | -. 0347 |  | . 1372 | -. 0962 |
| ${ }^{a}$ Eutectic, $M=0.25148, \theta=0.79553^{\circ}, j=0.1481$. <br> ${ }^{b}$ Eutectic $M=.04834, \theta=.16353^{\circ}, j=.0850$. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

about three hundred-thousandths of a degree for more dilute solutions. ${ }^{3}$

The $j$ values for the chlorates are more negative, that is, the activity coefficients are larger, than those for the corresponding nitrates. Those for lithium and sodium perchlorates are still more negative, so that lithium perchlorate has the most negative $j$ function of any of the twenty-five uniunivalent salts we have studied. The $j$ value for potassium perchlorate is, on the other hand,
(3) Earlier measurements are reported only on dilute solutions of sodium and potassium chlorates, and on concentrated solutions of lithium chlorate. The references are given in "International Critical Tables." Vol. IV, pp. 258-259.

Table IV
Values for -Log $\gamma^{\prime}$ for the Alkali Chlorates and Perchlorates

more positive than those of the chlorate and nitrate, and even more positive than the DebyeHückel limiting law. The difference from the latter is, however, less than $0.3 \%$ at the eutectic, and therefore not much more than the error of measurement on this difficultly soluble salt. Except for the "humps" in the curves for the ammonium salts, and the smaller one for lithium chloride, all the uni-univalent salts we have studied fall in the spread of lithium and potassium perchlorates. Their relations will be discussed more fully in paper VI.
Cambridge, Mass. Received November 10, 1933
[Contribution from the Research Laboratory of Physical Chemistry, Massachusetts Institute of Technology, No. 317]

## The Freezing Points of Aqueous Solutions. VI. Potassium, Sodium and Lithium Formates and Acetates ${ }^{1}$

By George Scatchard and S. S. Prentiss

The freezing point depressions of the potassium, sodium and lithium formates and acetates were measured since salts of the lower aliphatic acids are of considerable practical importance, and because of the information the study of them can give as to the effect of the shape of ions on the properties of their solutions. Aside from the difference between the carbon and nitrogen nuclei, the formate ion differs from the nitrate ion in the replacement of one oxygen by a hydrogen, which decreases greatly the symmetry of the ion, par-
(1) Paper V in this series is in This Journal, 56, 805 (1934).
ticularly since the ionic charge is doubtless associated with the oxygens. The acetate ion has the additional difference of a $\mathrm{CH}_{2}$ group inserted very unsymmetrically between the carbon and the hydrogen of the formate ion.

The lithium formate was prepared from c. $\mathbf{P}$. formic acid and washed lithium carbonate. It was crystallized three times from conductivity water. The starting materials for the other salts were the $\mathbf{C}$. $\mathbf{P}$. or reagent salts. The potassium salts were made neutral to phenolphthalein with C. P. potassium hydroxide. So-

